Maximal residuated lattices with lifting boolean center

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal residuated lattices with lifting Boolean center

In this paper we define, inspired by ring theory, the class of maximal residuated lattices with lifting Boolean center and prove a structure theorem for them: any maximal residuated lattice with lifting Boolean center is isomorphic to a finite direct product of local residuated lattices. MSC: 06F35, 03G10.

متن کامل

Topological Residuated ‎Lattices

In this paper, we study the separtion axioms $T_0,T_1,T_2$ and $T_{5/2}$ on topological and semitopological residuated lattices and we show that they are equivalent on topological residuated lattices. Then we prove that for every infinite cardinal number $alpha$, there exists at least one nontrivial Hausdorff topological residuated lattice of cardinality $alpha$. In the follows, we obtain some ...

متن کامل

Boolean Lifting Properties for Bounded Distributive Lattices

In this paper, we introduce the lifting properties for the Boolean elements of bounded distributive lattices with respect to the congruences, filters and ideals, we establish how they relate to each other and to significant algebraic properties, and we determine important classes of bounded distributive lattices which satisfy these lifting properties.

متن کامل

Dense Elements and Classes of Residuated Lattices

In this paper we study the dense elements and the radical of a residuated lattice, residuated lattices with lifting Boolean center, simple, local, semilocal and quasi-local residuated lattices. BL-algebras have lifting Boolean center; moreover, Glivenko residuated lattices which fulfill the equation (¬ a → ¬ b) → ¬ b = (¬ b → ¬ a) → ¬ a have lifting Boolean center.

متن کامل

DIRECTLY INDECOMPOSABLE RESIDUATED LATTICES

The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra universalis

سال: 2010

ISSN: 0002-5240,1420-8911

DOI: 10.1007/s00012-010-0066-3